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Abstract

In this paper, we give a characterization of best constant approximants in Lorentz gfa¢es
1< ¢ < o0, and we establish a way to obtain the best constant approximants maximum and minimum.
We also study monotony of the best constant approximation operator.
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1. Introduction

Let Mg be the class of all real extendgemeasurable functions 4, 1], whereu is the
Lebesgue measure. As usual, foe Mg we denote by

pp(A) = p(x € [0, 1] 1f ()] > 4D, (420,

its distribution function and by

fr0) =inf{d:u,(H<e},  (120),
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its decreasing rearrangement. We recall thatf*(¢)) <z, > 0. For other properties of -
and f*, the reader can s¢g, p. 36—42].

Now, we give some basic notations and definitions. wwet (0,1] — (0, 00) be a
weight function, non-increasing and locally integrable with respegt teor f € Mg and
1<qg < o0, let

1
1 g
1y = ( /O w(O) (f*(1) du(r)) .

We consider the Lorentz spadé’? := {f € Mo : [ fll,,, < oo}. For fe L™, let
C be the set of alt: € R such that

1f = elug = InEIF =Kl g -

Itis well known thaiC r is anon-empty and compact interval. Each eleme@tadt called
a best approximant df We denotef = min(Cy) and f = max(Cr). Consider the best
approximation operator, defined (/) := Cy. In [5], Landers and Rogge, introduced
the following monotony concept:

T is monotone ifff <g,c € Cy,d € Cy thencvd € Cy ande Ad € Cy,

wherec v d = maXc, d} andc A d = min{c, d}.

In [3] a description of the best monotone approximantd, if0, 1], is given. In[2] the
authors gave a method to construct a best monotone approximahidni] and in[9], it
was extended foE?[0, 1], 1 < p < oo. Later in[6], Marano and Quesada studied approx-
imation in L 4[0, 1], for a suitable functiokp. More precisely, they gave a characterization
of the best monotone approximants set and a method to construct the best monotone ap-
proximants maximum and minimum. On the other hand, Landers and Roffgjestudied
the monotony of the best monotone approximation operatbg,in

In this paper, we shall be restricting ourself to consider simple functions almost every-
where. The motive is the difficulty in working with the Lorentz norm in approximation
problems. In fact, before that an integration of the data with a certain weight be done, a
non-increasing rearrangement of them is necessary. This rearrangement does not allow us,
in general, to find a suitable expression for the Gateaux derivative of the norm at a given
function. On the other hand, it is well known (spg p. 3]) that the Gateaux derivative
provides a characterization of best approximants on subspaces.

In Section 2, we give a characterization of best constant approximants for a simple
function and we establish a way to obtain the best constant approximants maximum and
minimum.

In Section 3, we study the monotony of the best constant approximation op&rator
the sense of Landers and Rogge.
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2. Characterization of the best constant approximants

Given a non-constant simple functibrwe denoter (h) = {h; : 1<k </}, the range of
h. We introduce the following notations

Op = min{||h;| — |hjll - hi # hj},  p, = min{lh;] : |h;| > 0},

in{o,,y .
WIf5h>0,

Pn= Iy if 5, =0

andKy, = min{f, 7, B,_,}. Clearlyf, > 0andK; > 0. Since(h +a) —h+a=h—h
and(h+a) —h+a=h—h,a € R, we have

Knio =K, acR. 1)
We denotey, the characteristic function of the skt

Lemma 2.1. Letg € L™ 7 and letE C [0, 1] be au-measurablesuch thatgyz > 0. Then
forall ¢ > 0,

(g +)xp)" = ((@xp)" + o, uE)- (2

Proof. From the definitions of distribution function and decreasing rearrangement, we get

Higterzy (QXE)™ (1) +0) = 1y, ((81p)" (1)<t

and

gy, (8 + O 1E) (1) = ) = fgreyy, (8 + xp) (1) <t

for all t >0. Therefore, the lemma is an immediate consequence of the definition of the
decreasing rearrangement.]

We recall that a functiow : [0, 1] — [0, 1] is a measure preserving transformation if,
wheneveEE is a measurable subset[6f 1], the set—1(E) is a measurable subset[6f 1]
andu(o~X(E)) = u(E).

The following theorem was proved [t, p. 82].

Theorem (J.V. Ryff). Let (R, n) be a finite non-atomic measure space and let f be a non-
negativeu-measurable function on R. Then there is a measure preserving transformation
6: R — [0, u(R)] suchthatf = f* oo u-a.e.oN R

The following lemma is the key for the proof of the main theorem of this Section. We
shall only work with simple functions, because the next lemma cannot be extended to every
function inL¥-4. This can be seen with simple examples.



F.E. Levis, H.H. Cuenya / Journal of Approximation Theory 131 (2004) 196207 199

Lemma 2.2. Let h be a simple function, & ¢ < f§, and let u be a measurable function
such thalD<u < & Then there is a measure preserving transformatiario, 1] — [0, 1]
such that

(h+su+t)*ooc=|h+su+t] p—a.e.onl0,1] 3)

forall s € {0, 1}, 7 € [0, ¢]. The set wher€3) is satisfied, does not depend on s and t.

Proof. Fix r € [0, ¢]. We denoteR(h*) = {h} : 1<k<I'}, I'<I, the range ofi*. We
consider the followingi-measurable sets,

Ef :={xe€[0,1]: h(x)=h}}, 1<k<l
and
E{ :={x e[0,1]: h(x) = —h}}), 1<k<I, h} #0.

By Ryff theorem, there are] : E;" — [0, w(E;)] ando, : E; — [0, u(E; )] measure
preserving transformations such that

: + : +
((h+u))cEk+)* °0f =|htuwy,, |, p—ae onk )
and

((h‘*‘M)XE,)*OG;:: |(h+M)XE,|, p—a.e ONE, . (5)
k k
Clearly, (h +u)y . >0. From Lemma 2.1,fog = h +u,c =t andE = E;", we obtain
k

(h+u+07 )0 () = ((h+wy ) (el @) +1. p—aeonEl. (6)
k k
On the other hand, from (4) follows that
((h+ M)XE+)*(0;J{(X)) +1=h(x)+u)|+1t=h(x)+ulx)+1],
k
W—a.e.on E,j @)
So, from(6) and(7), we have

((h4+u+ z)XE+)*(a,j(x)) = |h(x) +u(x) +t| p—a.e ONE;. 8)
k

Since 0Ku < cand 0<r<e, (—(h +u) — t)}(E_ = hi —u —t>h} — 2¢. We also have,
k

e< f,< % forall 1<k <I', hf # 0. Therefore(—(h+u) —t)XE_ >0.Then, from Lemma
k
2.1,forg=—(h+u)—t,c=tandE = E, , we get

((h+wy ) (o @) = ((h+u+0g )@ () +1, p—aeonE . (9
k k
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So,(5) and(9) imply
((h+u+ t)XE,)*(GIZ(X)) = ((h + u)xr)*(a,:(x)) —t=1h(x) +ulx)| —1
k k

=|h(x) +u(x)+t], p—ae ONE,. (20)
Furthermore,
((h + r)xEkg*(a,j(x)) —hf+1=h(x)+1], pu—ae oNES (11)
and
((h + t)xEk,)*(o,:(x)) =hf—t=|h(x)+1t|, u—ae ONE,. (12)

We write L = 2I'if 0 ¢ R(h*) andL = 2" — 1if 0 € R(h*). For 1<k < L, we denote

ET., ifkis odd, ot ifkis odd,
— 2 — 2
Ee=1 £~ ifkiseven and o = o ifkiseven
2 2

Thus, from (8), (10), (11) and (12), we have proved that
((h +su+ t)xEk)*(O'k(X)) = |h(x) +su(x) +1t], p—ae ONE; (13)

foralls € {0,1},7r € [0, ¢] and 1<k < L.
Letmo = 0 andmy = Z’;zl M(E;j), 1<k < L. Next, we prove

(h + su+ 0% (0k(x) +mi—1) = (A +su+ D)y, ) (0k(x)), @ —a.e. on kg (14)

foralls € {0,1},t € [0, ¢] and 1<k < L. From (13) and the assumption am t ands,
follows that

By e (B 514107 p)* (01(x)) = my—1
+ 'u(h-%—su-H)zEk (((h +su+ t)XEk)*(O'k(X)))

< my—1+or(x), p—a.e.onky. (15)

The definition of(h + su + t)* and (15) imply
(h + su+ )" (0x(x) + mp-1) <((h + su+ 0y, )" (0x(x)),  p—a.e.on Ey. (16)

Now, we see the reciprocal inequality of (16). A straightforward computation shows that for
z € [mg—1, my), we have fj,, <(h+su+1)*(z) < h},, +2¢if kisoddandi} — 2¢ <
2 2 2

(h + su+0)*(2) <% if kis even. Sincgu(o; *({mi})) = 0, forz = my_1 + ox(x) €
[my—1, mg], we obtain
(/’l + su + t)*(mk_l +or(x))) = —mp_1+ Mh+w+t

X((h + su +1)*(mg—1 + ok (x)))
< or(x), p—a.e. onkEy. a7

M(h+:u+t);(Ek (
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Thus, (17) implies
((h +su+ 1)y, )"0k () < (h 4 su+ )" (0 (x) + mi-1)  p—a.e.onEg. (18)

Finally, by (13) and (14) the functiondefined by (x) = g (x) +my—1,x € Ex, 1<k<L,
is a measure preserving transformation fulfilling (3).]

It follows from a characterization theorem of best approximants[&ge 3]), that

q q
If —c+tdllug —11fllwg >0
t

ceCy iff Yi(f—c,d)= “n3+
11—
forall d € R.
Now, we have
[dT(f—c) ifd>0,
Folf e d) = {dr_(f—c) if d <0,

q q q q
wherel ' (f) = lim,_ o+ M andl'_(f) =lim;_o- M There-
fore

ceCy iff I'y(f—c)20 and I'_(f —c¢)<O. (19)

For />0, we consider
Ip(Z):={x€[0,1]: f =4},
ag(2):=ps(A) + uly(4) and
by(2) = wup(A) + ul p(A).

Lemma 2.3. Let f be a simple function anBl( /) = { fx : 1<k<I}. Then
ag(fo) by (—fi)
rvH=ql / il rwdp =y / il wdp ] (20)
£ >0 uy(fio) fi<0 af(—fi)
In (20), we write| f;|9~1 := 1if g = 1and f; = 0.

Proof. Let 0 < ¢ < ﬁf andu = 0. Then by Lemma 2.2 there is a measure preserving
transformationg : [0, 1] — [0, 1] such that

(f+D*oco=|f+1t], p—ae. on[0,1], te][0,e]
So,
1
I 1l = [ w@lf + 1t dn 1€ 105),
Therefore, using the Lebesgue dominated convergence theorem we obtain

If+tld, —
t

q 1
Fe(f) = lim, I Voq _ /0 w(@)g| 19" sgn(f) dp. (21)
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In (21), we write| f|9 Lsgn(f) ;== 1ifg = 1 andf = 0.
On the other hand,

o Ip(fi) = [up(fi)ap(fo)] if fx=0 and

. 22
o1 17 (f) = [ag(—fi) br(—fo] it fi <0, )
In consequence, (21) and (22) imply (20)]
Sincel'_(f) = —T'+(—f), from Lemma 2.3 and (19) we have the following theorem

of characterization.

Theorem 2.4. Let f be a simple function anB(f) = {fi : 1<k<I}. Thenc € Cy iff it
satisfies

af—c(fr—c) a—1 by e(c—fi) ot
(@) ﬁécfuf,c(fk—c) | fie —clf " wdu> fkgt.faf*f(c_fk) | fx —cl9 twdp.

ac—y(c—fi) 1g—1 be—y(fr—c) _g-1
® szgcfuf_f(c—ﬁc) i —elwdp= 3 p e o oo 1 fi = el wdp

Lemma 2.5. Let f be a simple function anBI(f) = {fx : 1<k <!I}. Thenl';(f — x) and
I'_(f — x) are nonincreasing functions of x.

Proof. Let ¢ < d. We only show that ' (f — d)<I'+(f — ¢). The proof of [ _(f —
d)<TI'_(f — ¢) follows from the equality"_(f — k) = —I"+(k — f). We define

afp—y(fr—u)
ra=Y | gl fi — ul~Yw dp

fi>u My (fr—u)

and

by (u—fi)

o=y [ gl — ul"Mw .

fe<u afp—yWu—fi)

ClearlyI'y (f —u) = P(u)— Q(u). Itwill be sufficient to prove thal is a non-increasing
function andQ is non-decreasing function. First, we see fAat non-increasing. Suppose

fi=d, thenp((x : f(x) < 2c — fih) <p(lx : f(x) < 2d — fi}). So,
1o = <y Ufi = d).

Furthermorea s, (fx — u) — wp_, (fik —u) = uly(fi)) for u< fi. Sincew is non-
increasing| fi — d|?*<|fi — ¢’ t and{k 1 fizd) C {k : fi>c} we get, P(d)
<P(c).

Now, we shall prove thad is non-decreasing. We suppoge< c. Asu({x : f(x)>2d —
fih<plx : f(x) > 2c — fi}), we have

af—a(d— fi)Spyp_.(c— fi)<ap—c(c — fi).
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Since | fi — cl97i< i —dI97h k : fi < o C ko fie < dY}, uy(fo)
=bs_yu—fi)—ar_,(u— fi),foru > fi, andwis non-increasing, we g€ (c) < Q(d).
|

In the next theorem, we establish a way to obtain the best approxirﬁamd?.

Theorem 2.6. Let f be a simple function. Thefi = max{c : I, (f — ¢)>0} andf =
min{c : I'_(f — ¢)<0}. N

Proof. Lets = sup{c: I'1.(f — ¢) >0}. By (19),
ry(f - f)=0. (23)

Then f <s. It will be sufficient to show thaf = s. We suppose thaf < s. Then there is
C, f < ¢<s such that

Ii(f =020 (24)
From Lemma 2.5 and (19),
I (f—o<I-(f - f<o. (25)

So, (19), (24) and (25) imply thate C, which is a contradiction. Similarly, we can see
that f = min{c: I'_(f —c)<0}. U

3. Monotony of the best constant approximation operator

In this section, we study the monotony of the best approximation opefatothe sense
of Landers and Rogge. We begin with two lemmas.

Lemma 3.1. Let f and g be simple functions afd< e< K¢ such that0<g — f < e. If
ceCyandd € Cg,thenc v d e Cq.

Proof. Supposel < c. Leth = f — f andu = g — f. Clearly

h+ul? — h?<|h+u+t]7 — |h+1]7. (26)
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Furthermore, O< ¢ < f§, and 0<u < &. Then, by Lemma 2.2 there is a measure preserving
transformatiorv : [0, 1] — [0, 1] such that

(h+su+t)*ooc=|h+su+t|, p—ae on[0,1] se{01}, rel0c¢].

(27)
So,
1
lh + su + t||"w,q = / w(o)|h+su+t|?7du, se€{0,1}, te[0,c¢]. (28)
0

Therefore, from26), (27) and(28), we get

Ih+ulldy g —NAlE, <Ih+u+tlll, —Ih+21%,. tel0 ]
or equivalently,

v q |49 = q -4
lr =7+, = 1F =7l . ls—F+0l,,—le- f||w,q’ -

t t

In consequenc€. (f — f)<I'+(g — f), and by Theorem 2.6 <. SinceC, is convex
andc < f, we have ¢v d € C,.
If d >c, the lemmais obvious.

Lemma 3.2. Letfand g be simple functions such thfat Zizl kalk andg =y, where
1<j<l.Ifce Cyandd € Cyi4 fors>0,thenc vd € Crogg. '

Proof. If s = 0, it is obvious. Suppose> 0. We only consider the non-trivial case- d.
By the convexity of the saf ; ., it will be sufficient to show that the following property
is verified:

Forall c € Cy thereisd’ € Cyig, suchthatd >c.
Fix ¢ € Cy. We consider the following set
C:={xe[0,s]d >c forsomed’ € Csyyg}.

If a = sup(Q, we shall show that € C. Let (a,),en C C be a sequence such that
lim,—oo0p = a andd,, € Criq,q With dy, >c. Sinced,, is bounded, then there is a
subsequence which converges to a real numabevith d’ > c. By simplicity we denote
(da,)nen this subsequence. For each constant fundtiome have

If+ong —do, | <If +ong = bI<If +ag —bll +la—ally, Il
J

Then| f +ag —d'|<|f +ag — b|. S0,d" € Cyiqe. Supposer < s and leth be the
simple functionz = f + ag. If h is constant, then

frag=d<f+@+eg, O<e<s—a.
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Thereforec <d’' <k, for allk € Cyy(ate)s- SO,a + ¢ € C. This is a contradiction. Now,
suppose thdt is non-constant and considek0e < min{Kj, s —a},u = f + (a+¢&)g and
p € Cy.Clearly 0<u — h<e<Kp. In consequence, from Lemma 3.1, we getd’ € C,,.
Sincec<d’'< p v d' we havea + ¢ € C. This is other contradiction. Sa,=s. [

Theorem 3.3. The best approximation operator, is monotone on the set of the simple
functions.

Proof. Let f and g be simple functiong;<g, ¢ € C; andd € C,. We only consider the
non-trivial casec > d. Without loss of the generality we denofe = Zi:l fk;(,k and

g§=Y)1 gk, - We define

G f if n =0,
n= ZZ:lgkxzk +Z§<=n+l kalk if0 <n<l.

ClearlyGo = f, G; = g and
Gur1=Gy + (gny1— fn+1)X1n+1 2G, forO<n<i-1

We shall prove thaG, <G,1 for all 0 < n<I — 1. In fact, ifk > G,,1 for some
k € Cg,, then by Lemma 3.2 we gét € Cg,,, and this is a contradiction. Therefore
d<c<f=Go< <G, =7g. S0, € Cq.

The proof of that € C¢, follows analogously consideringg < — f, —d € C_g and
—C € C,f. |

Theorem 3.4. Let f and g be functions ih*? such thatf <g,c € Cy andd € Cq. Then

(@) If Cyis unitary,c vd € C,.
(b) If Cq is unitary,c Ad € Cy.

Proof. (a) The case <d is trivial. Suppose > d. It is well known that all non-negative
measurable function is the pointwise limit of a non-decreasing sequence of non-negative
simple functions (sef8]). Let (f; )n, (f; Ins (1), (h;)), be non-negative simple function
sequences such thgf™ + f* £, 1t f~,ht 1 g™ andh, 1 g~. Considerg,} = A v £,

andg, = h, A f,.Sinceft <gtandg™ < f,theng! 1 ¢t andg, 1 ¢~. By Lemma
2.1in[4], we have (f* — £;H)* | Oand|f™ — £,7|<2| f|. Using the Lebesgue dominated
convergence theorem we obtajifit — £, ||w’q7 — 0. Analogously)| f~ — £, HWI — 0,

l¢* —&rl,, — 0andls™ —gr], , — 0 Thus,

”f - fn”w,q — 0 and ”g - gn||w,q — 0. (29)
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Letc, € Cy, andd, € Cy, . Sincef, <g,, Theorem 3.3 implies that
cn Ndp e Cyp, and ¢, vVd, € Cy,.

The sequenceg, A d,), and(c, V d,), are bounded, then there are subsequences which
converge, say, to’ andd’ respectively. Furthermore; <4’ and from(29),¢" € Cy and
d’ € Cq. Now, if Cy is unitary,d < ¢ = ¢’<d’. In consequence € C,, becaus&, is a
convex set.

(b) The proof is analogous.[]

Remark. In the case thaC, andC, are unitary sets, we obtain monotony in the usual
sense.

The following corollary provides two important cases for which there is uniqueness of
the best constant approximant.

Corollary 3.5. Let f and g be functions id "¢ such thatf <g.If () 1 < g < oo or
(b) f, g € C[0,1], thenT (/)< T (g)

Proof. (a) If 1 < g < oo, L™ is a convex strictly set (sdd, Theorem 3.3]). Therefore,
we have unigueness and by Theorem 3.4, the proof is complete.

Next, assume thdtis a continuous function. Suppose th@t is not unitary and let
A:={xe[0,1]: f < f(x) < f}. Thenu(A) > 0 and

1 1 —
<SIf = L1+ 51f =TI ona. (30)

1 _
‘f_i(i"'f)

Thus, from (30) and Lemma 3.2, we get (f— 3 (f + f))* < (%|f — fl+3lf —f|)*
for some set of positive measui, So,

i I T I T
' 2= w 2 “lw,g 2 w.q
This is a contradiction. Thus? s is unitary. Now, (b) follows from Theorem 3.4. [

Remark. Finally, we observe that i : Ry — R, is a differentiable convex function,

with ¢(0) = 0, ¢(t) > O fort > 0, and

‘Pw,4>(f)=/0 PUf* ) w(t) dp(t)

is the Orlicz—Lorentz functional, then all the results of the Sections 2 and 3 are true, if we
change the Lorentz norifl|,, , by the functionat¥',, ¢ in all place.
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